IDENTIFICATION ROBUST INFERENCE FOR MOMENTS-BASED ANALYSIS OF LINEAR DYNAMIC PANEL DATA MODELS
نویسندگان
چکیده
We use identification robust tests to show that difference (Dif), level (Lev), and nonlinear (NL) moment conditions, as proposed by Arellano Bond (1991, Review of Economic Studies 58, 277–297), Ahn Schmidt (1995, Journal Econometrics 68, 5–27), Bover 29–51), Blundell (1998, 87, 115–143) for the linear dynamic panel data model, do not separately identify autoregressive parameter when its true value is close one variance initial observations large. prove combinations these however, so there are more than three time series observations. This then solely results from a set of, so-called, conditions. These moments spanned combined Dif, Lev, NL conditions only depend on differenced data. that, contain identifying information parameter, discriminatory power Kleibergen (2005, Econometrica 73, 1103–1124) Lagrange multiplier (KLM) test using identical largest rejection frequencies can be obtained moments. shows KLM implicitly uses they parameter.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولStatistical inference in dynamic panel data models
T.W. Anderson and his collaborators have made seminal contributions to inference with instrumental variables and to dynamic panel data models. We review these contributions and the extensive economic and statistical literature that these contributions spawned. We describe our recent work in these two areas, presenting new approaches to (a) making valid inferences in the presence of weak instrum...
متن کاملBayesian Inference for Random Coefficient Dynamic Panel Data Models
We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit’s process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit’s process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our me...
متن کاملIdentification-robust inference for endogeneity parameters in linear structural models
We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters which represent the dependence between possibly endogenous explanatory variables and disturbances in a linear structural equation (endogeneity parameters). We focus on second-order dependence and stress the distinction between regression and covariance endogeneity parameters. Such parameters have intrin...
متن کاملIndirect Inference for Dynamic Panel Models ∗
It is well-known that maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with fixed effects is inconsistent under fixed time series sample size (T ) and large cross section sample size (N) asymptotics. The estimation bias is particularly relevant in practical applications when T is small and the autoregressive parameter is close to unity. The presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2021
ISSN: ['1469-4360', '0266-4666']
DOI: https://doi.org/10.1017/s026646662100027x